

VINCKE
INDUSTRIAL
HYDRAULIC
VALVES

3

index

link to your page / link a su página

4VNKSV Directional on/off control	4	
► CETOP 3	7	
► CETOP 5	10	
4VNKEH Electro-hydraulic directional control	13	
► CETOP 7	17	
► CETOP 8	18	
► CETOP 10	19	
Modular valves series		
► KRV relief valves	20	
► KRDV reducing valves	23	
► KCV check valves	25	
► KFR flow regulator valves	27	
CONVENTIONAL VALVES: PRESSURE CONTROLS		
► DAM	31	
► DIU	33	

INTRODUCTION

Introduction

Hydraulic valves, in addition to the force density advantage of actuators, are what help make hydraulics unique in their control of force, torque and motion. Valves govern direction, pressure and flow of hydraulic fluid, enabling smooth, safe and controlled use of actuators.

Every machine both requires and uses valves, varying vastly in execution from a few valves to dozens on one machine. Their use can be as simple as a relief valve to protect your pump and actuator, such as the relief valve built into the kick-off valve on a log splitter. Conversely, the complexity of a hydraulic circuit can be extensive, using a dozen valves per function as can be seen in manifolds, such as a pilot operated valve with dual counterbalance valves, dual flow controls, dual post-compensation and load sensing checks

Directional control valves are often described as the number of "ways" fluid can travel through itself, and also by the positions available to be shifted into. The ways are equal to the number of work ports, so a 4-way valve will have pressure, tank and A and B work ports. Positions are equal to the number of positional envelopes. For example, one would describe a double acting single-monoblock valve as "4-way, 3-position," or simply a "4/3 valve."

Directional valves are available in monoblock or sectional valves, common to the mobile-hydraulic industry, as well as subplate mounted industrial type valves such as ISO style D03's, D05's et al. Also common to both mobile and industrial markets are cartridge valves installed into manifold blocks. Cartridge valve manufacturers offer many unique products, and allow high levels of creativity with limitless available valve combinations.

Pressure valves are components designed to in some way limit pressure. Most pressure valves are based on a poppet being pushed against a seat with an adjustable spring. A relief valve controls maximum pressure for either the entire system or a sub-circuit of it, the lowest spring pressure being the one to open up first. Most other pressure valves are based on the relief valve's simple spring-loaded ball or poppet.

DIRECTIONAL ON/OFF CONTROL

Vincke solenoid valves is designed and tested under innovative concepts to satisfy the advanced needs of currents machines: versatility, reduced power absorbed and safety of use

Solenoid directional valves are used for changing flow direction in hydraulic systems.

Technical characteristics

		Size/Type		
		6	10	
working pressure	Oil ports P,A,B	35	31.5	
Mpa	Oil ports T	16	16	
Max.	Flow L/min	80	120	
Working fluid		Mineral oil; phospate	e-ester	
Fluid Temperature °C		-2070		
Visco	osity mm²/s	2.8100		
working voltage V	DC	12	24	
working voltage V	AC	110V/50Hz	220V/50Hz	
Max. Swi	ch frequency T/h	15000 (DC)	7200 (AC)	
insulation grade		IP65		
Weight kg	Single solenoid	1.45 DC 1.4 AC	5.1 DC 4.3 AC	
weight kg	Double solenoid	1.95 DC 1.9 AC	6.7 DC 5.1 AC	

Cleanliness

The maximum allowable cleanliness of the oil should be according to 9th degree of Standard NAS1638. It is suggested that the minimum filter rating should be ß10≥75.

Ordering code

4VNKSV - 6 - E - OF - DC24 - 4L

4 main ports

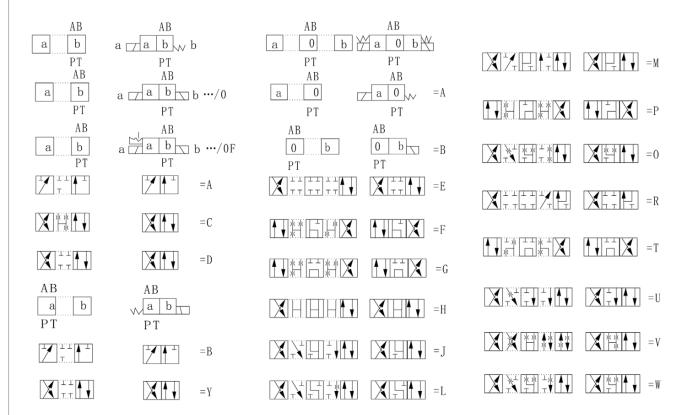
Nominal size 6 Cetop 3 or 10 Cetop 5

Type of spool E,J,D,C,HA,E etc.

With spring return = no code

Without spring return = O

Without spring return with detent =OF

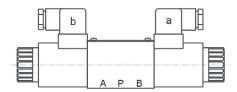


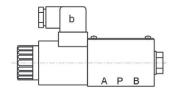
JINCAE HYDRAULICS

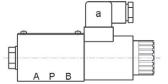
DIRECTIONAL ON/OFF CONTROL

Code symbol

1)Example:

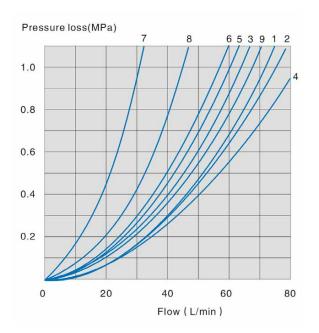

Spool symbol H with spool A, ordering code HA


Solenoid directional valves are used for changing flow direction in hydraulic systems.



VIIICHE HARRILICS

DIRECTIONAL ON/OFF CONTROL

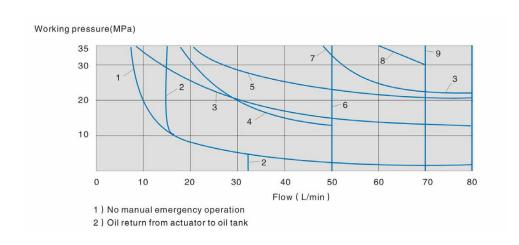


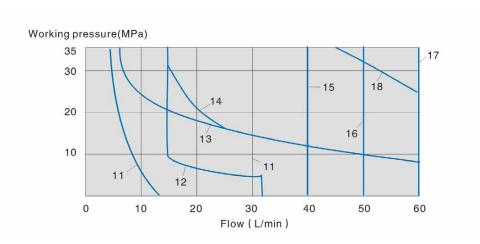
CETOP 3 SIZE 6

SPECIFICATION PERFORMANCE CURVE Measured at v=41mm²/s and t=50°C

Function		Direct	ion	
Code	P→A	P→B	A→T	B → T
С	1	1	3	1
D	5	5	3	3
Е	3	3	1	1
F	1	3	1	1
G	6	6	9	9
Н	2	4	2	2
J	1	1	2	1
L	3	3	4	9
M	2	3	3	3
Р	3	1	1	1

8. Spool symbol G in the neutral position P→T

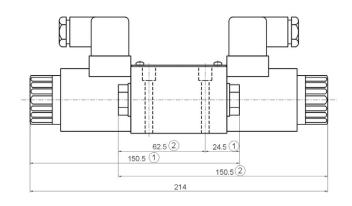


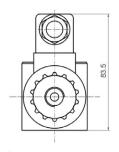

DIRECTIONAL ON/OFF CONTROL

Specification working limits

With regard to the four-way valve, the normal flow data as show is get from the regular use of two directions of the flow. See tables. If only one flow direction is needed, the maximum flow may be very small in the serious condition.

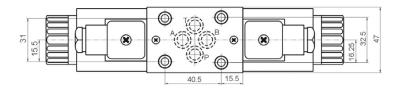
DC 24 12 110		А	C 220 110 24, 50HZ
Curve	Symbol	Curve	Symbol
4	F P	14	F M
5	J	15	G
6	G H	16	Н
7	L	17	E H/OF E/OF J M L
8	C D	18	C D
9	M		
10	E H/OF E/OF		

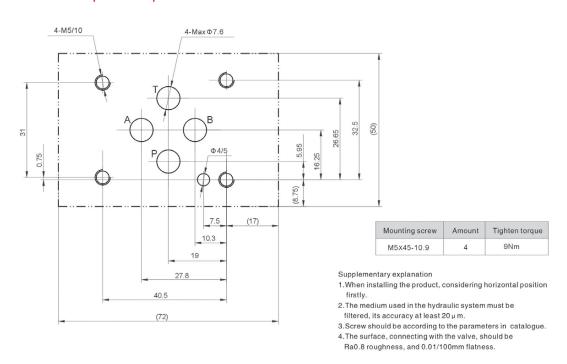




JINCKE HADRAULICS

DIRECTIONAL ON/OFF CONTROL

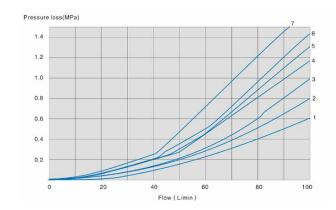

External dimensions



12

Two positions Electrical operated directional control valve

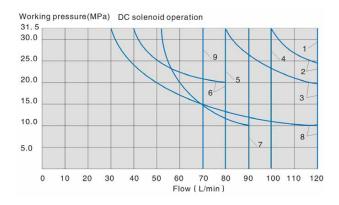
Size of subplate oil port



DIRECTIONAL ON/OFF CONTROL

CETOP 5 SIZE 10

SPECIFICATION PERFORMANCE CURVE Measured at v=41mm²/s and t=50°C


Function		Direct	tion	
Code	P→A	P→B	A→T	B → T
C D	2	2	3	3
Е	2	2	4	4
F	2	3	3	5
G	3	3	4	6
Н	1	1	4	5
L	1	1	4	5
M	1	1	5	1
Р	3	2	5	3

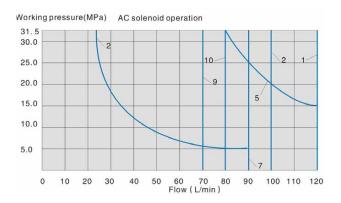
^{4.}Spool symbol G in neutral position P→T

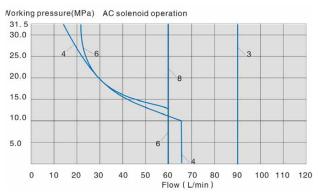
Specification working limits

With regard to the four-way valve, the normal flow data as shown is get from the regular use of two directions of the flow (e.g. P to A, and simultaneous return flow from B to T). See tables, if only one flow direction is needed, for example: when a four port valve which is closed up port A or port B, used as a three-way valve, the maximum flow may be very small in the serious condition.

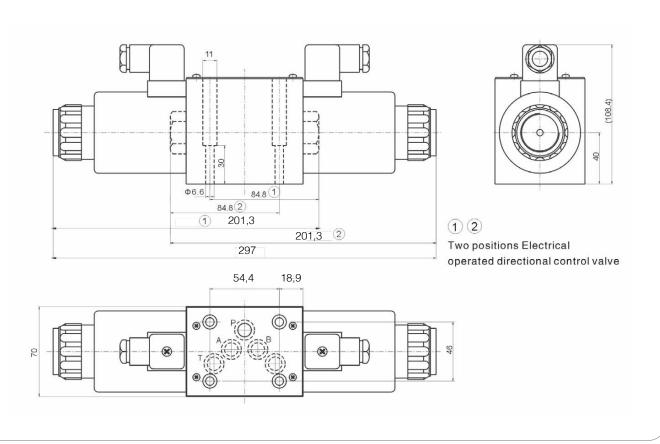
Curve	Symbol		
1	C D H/OF E/OF M		
2	Е		
4	L J H		
6	G		
7	F P		

(1) Return circuit (independent of area ratio)



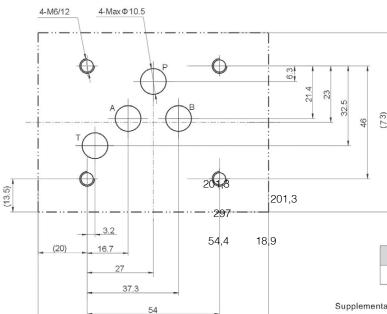


VINCHE WORKILICS


DIRECTIONAL ON/OFF CONTROL

110V 220V			
Symbol			
C D E/OF			
Е			
L M			
J			
G			
F P			
Н			

External dimensions



DIRECTIONAL ON/OFF CONTROL

Size of subplate oil port

(94)

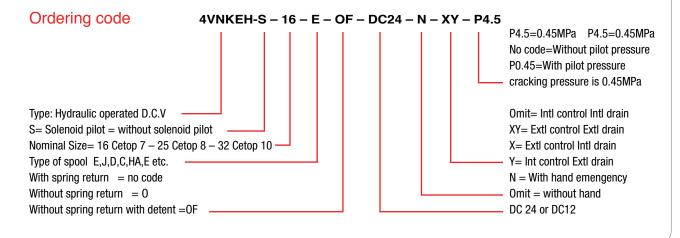
Mounting screw	Amount	Tighten torque
M6x40-10.9	4	15Nm

Supplementary explanation

- When installing the product, considering horizontal position firstly.
- 2.The medium used in the hydraulic system must be filtered, its accuracy is at least 20 $\mu\,m.$
- $3. \\ \mbox{Screw should}$ be according to the parameters in catalogue.
- 4.The surface, connecting with the valve, should be Ra0.8 roughness, and 0.01/100mm flatness.

Electro-hydraulic directional control valve is a control valve which can use the pressure of the hydraulic circuit to pull the spool and change the hydraulic oil direction.

Electro-hydraulic directional control valve is the combination of the electrical operated directional control valve and the hydraulic directional control valve. It uses the electrical operated directional control valve to control the hydraulic operated directional control valve, and change the hydraulic oil direction.


Electro-hydraulic directional control valve and hydraulic operated directional control valve are used mostly in hydraulic systems when electrical operated directional control valve can not afford the flow. It may control the movement of the power elements, or control the direction of the flowing oil.

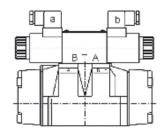
Technical characteristics

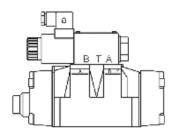
Size			16	25	32
	Port A,B,P			31.5	
Allowed maximum progure (Mpg)	Port T	Extl relief		16	
Allowed maximum pressure (Mpa)	PULL	Intl relief		16	
Port Y Extl reli		extl relief	16	6 for DC; 10 for A	AC .
Maximum control pressure (Mpa)			25		
Maximum Flow (L/min)		300	650	1100	
Working fluid				Mineral oil	
Fluid temperature (°C)			-20~70		
Whoight (Kg.)	With pilot single	e solenoid valve	8.8	8.8 18 41	
Wheight (Kg.)	With pilot doble	e solenoid valve			41.7

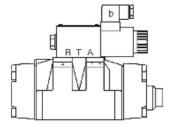
Cleanliness

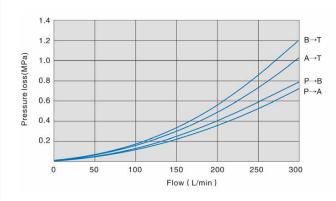
The maximum allowable cleanliness of the oil should be according to 9th degree of Standard NAS1638. It is suggested that the minimum filter rating should be β10≥75.

Code symbol

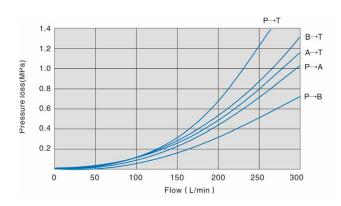

a B b PT	a AB AB B PT	AB AB a 0 b AB PT PT	
AB b	$\begin{array}{c c} AB \\ a a b b \cdots / 0 \end{array}$	$ \begin{array}{cccc} AB & AB \\ \hline a & 0 \end{array} $	
PT AB	PT AB	PT PT AB AB	=P
a b PT	a a b b w/0F	$ \begin{array}{c cccc} \hline 0 & b & \hline \end{array} = B $ PT	
T T T	=A	$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	=C	=F	
	= D		
AB a b	AB a b PT	☐	$\begin{array}{c c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$
	=B		
X	=Y		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$


1)Example:

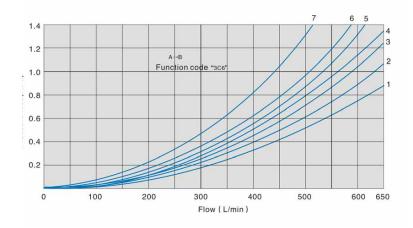

Spool symbol H with spool A, ordering code HA.



CETOP 7 NG16


SPECIFICATION PERFORMANCE CURVE Measured at v=41mm²/s and t=50°C

Spool E

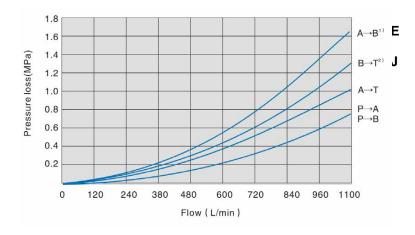


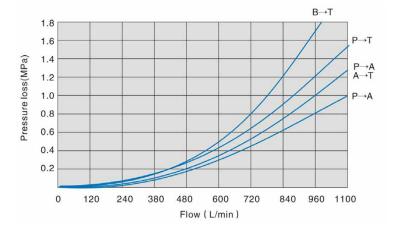
Pressure loss Mpa

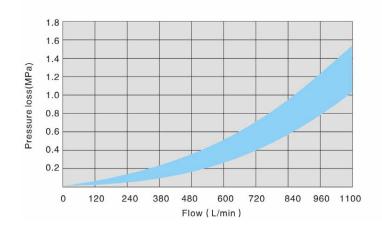
Spool G

CETOP 8 NG25

Function Code	Switching position			
Symbol	P→A	P→B	A→T	B → T
Е	1	2	4	5
F	1	4	1	1
G	4	2	2	6
Н	4	4	1	4
J	1	2	1	3
L	2	3	1	4
М	4	4	3	4
Р	4	1	3	4

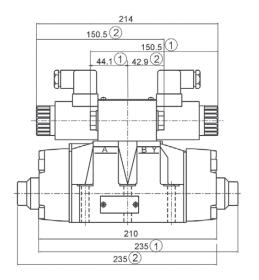


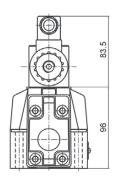


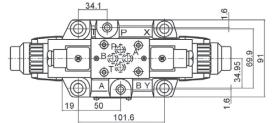

CETOP 10 NG32

Spool E-J

Spool G

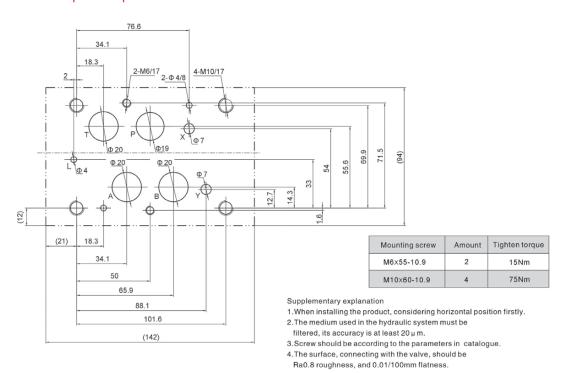



VINCY E


ELECTRO-HYDRAULIC DIRECTIONAL CONTROL VALVE

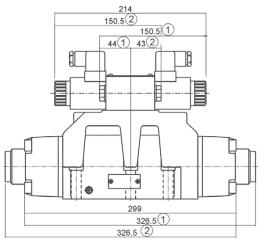
CETOP 7 NG16

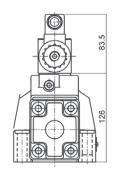
External dimensions

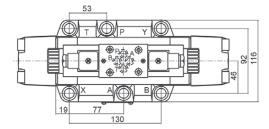


4/2 solenoid valve

Size of subplate oil port

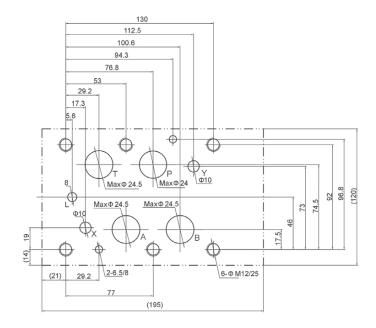






CETOP 8 NG25

External dimensions



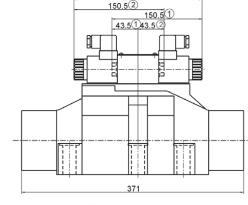
4/2 solenoid valve

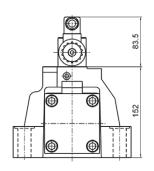
Size of subplate oil port

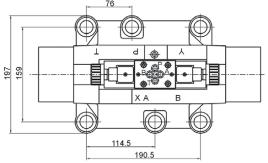
Mounting screw	Amount	Tighten torque
M12×60-10.9	6	130Nm

Supplementary explanation

- When installing the product, considering horizontal position firstly.
- 2. The medium used in the hydraulic system must be filtered, its accuracy is at least 20 μ m.
- $\label{eq:second-seco$
- 4.The surface, connecting with the valve, should be Ra0.8 roughness, and 0.01/100mm flatness.

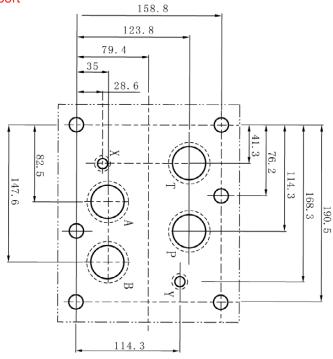






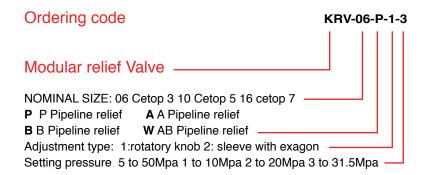
CETOP 10 NG32

External dimensions

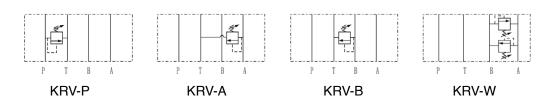


1 2 4/2 solenoid valve

Size of subplate oil port


KRV RELIEF VALVES

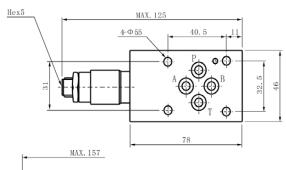
KRV series modular relief valves can control flow for positive direction pass oil port. Flow can be adjusted by handle. It passes to check valve for reverse flow.

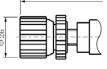


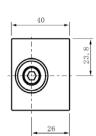
Technical characteristics

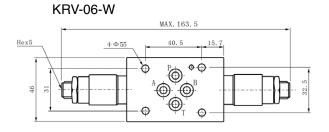
Size	6	10	16
Max. Flow (L/min)	35	70	120
Max. W.P (Mpa)	31.5		
Working fluid	mineral oil; phosphate-ester		
Fluid temperature (°C)	-20~70		
Viscosity (mm²/s)	12~380		

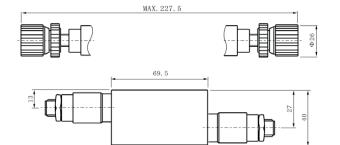
Code symbol

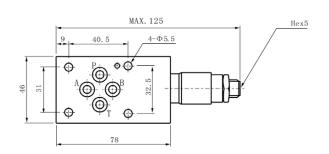

JINCKE HARAULES

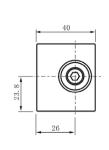

MODULAR VALVES SERIES

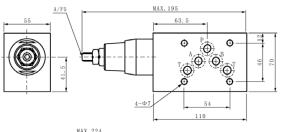

KRV RELIEF VALVES


Dimensions

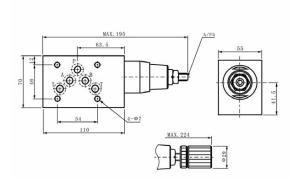

KRV-06-A

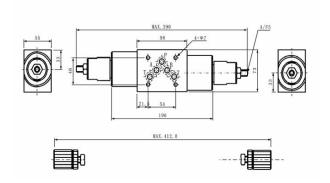




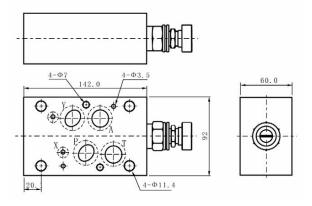

KRV-06-B/P

KRV-10-A



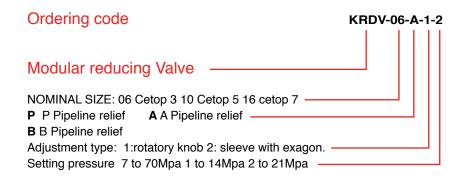

KRV RELIEF VALVES

Dimensions

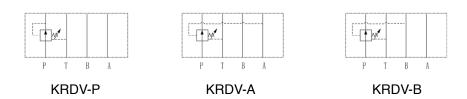

KRV-10-B/P

KRV-10-W

KRV-16-P


KRDV REDUCING VALVES

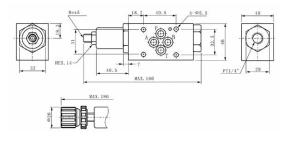
KRDV series modular reducing valves are used to reduce the pressure in a certain circuit lower than of the main circuit.

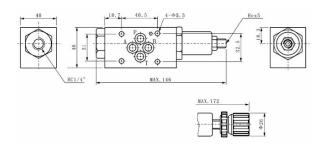


Technical characteristics

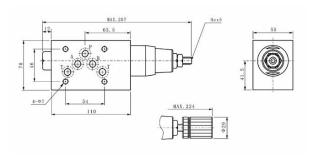
Size	6	10	16
Max. Flow (L/min)	35	70	120
Max. W.P (Mpa)	210		
Working fluid	mineral oil ; phosphate-ester		
Fluid temperature (°C)	-20~70		
Viscosity (mm²/s)	12~380		

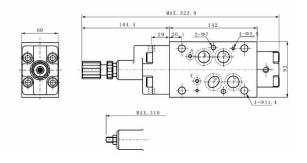
Code symbol




KRDV REDUCING VALVES

Dimensions


KRDV-06-B


KRDV-06-A/P

KRDV-10-A/B/P

KRDV-16-A/B/P

KCV CHECK VALVES

KCV series modular check valves allow free flow in one direction and block flow in the counter direction.

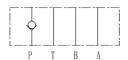
Technical characteristics

Size	6	10	16
Max. Flow (L/min)	40	100	250
Max. W.P (Mpa)	31.5		
Working fluid	mineral oil; phosphate-ester		
Fluid temperature (°C)	-20~70		
Viscosity (mm²/s)	12~380		
Opening pressure	A 0.05 B 0.25 C 0.4		

Ordering code

Modular check Valve

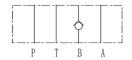
NOMINAL SIZE: 06 Cetop 3 10 Cetop 5 16 cetop 7

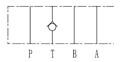

P P Pipeline

A A Pipeline

T T Pipeline

Code symbol


B B Pipeline

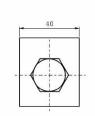

KCV-06-P

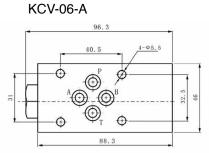
KCV-06-A

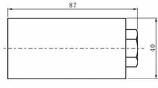
KCV-06-B

KCV-06-T

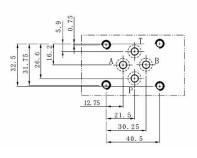
JINCKE HARDINGS

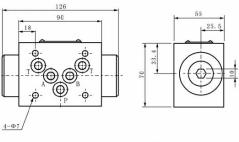

MODULAR VALVES SERIES

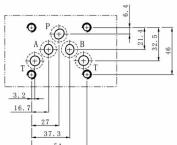

KCV CHECK VALVES

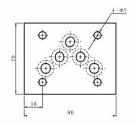

Dimensions

KCV-06-P/T/B

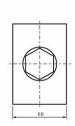


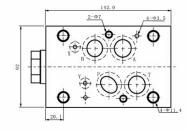






KCV-10-A/B




KCV-10-P/T

KCV-16-P

MODULAR VALVES SERIES MODULAR VALVES

KFR FLOW REGULATOR VALVES

KFR series modular flow regulator valves are used to restrict flow by handle.

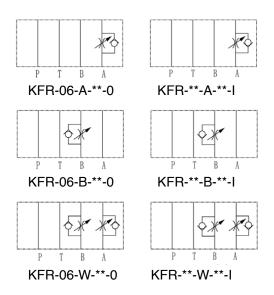
Technical characteristics

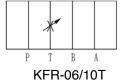
Size	6	10	16
Max. Flow (L/min)	35	70	200
Max. W.P (Mpa)	31.5		
Working fluid	mineral oil; phosphate-ester		
Fluid temperature (°C)	-20~70		
Viscosity (mm²/s)	2.8~380		
Opening pressure	A 0.05		

KFR-6-A-1

Modular flow regulator -

NOMINAL SIZE: 06 Cetop 3 10 Cetop 5 16 cetop 7

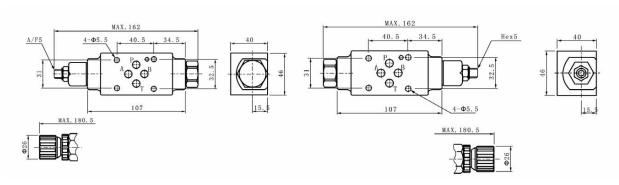

A A Pipeline **B** B Pipeline

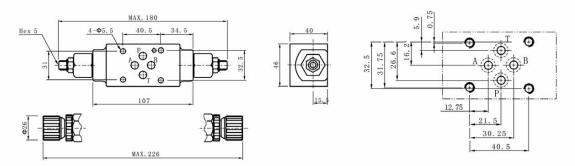

P P Pipeline T T Pipeline W AB Pipeline

Adjustment type: 1:rotatory knob 2: sleeve with exagon -

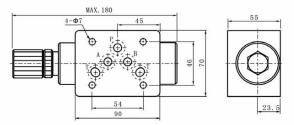
Throttle direction: Omit meter out 1 meter in

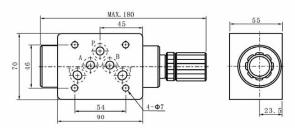
Code symbol




KFR FLOW REGULATOR VALVES

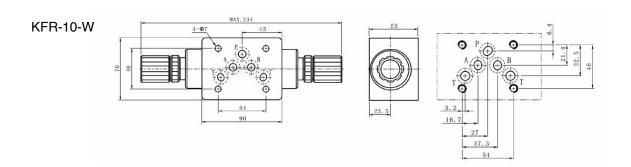
Dimensions

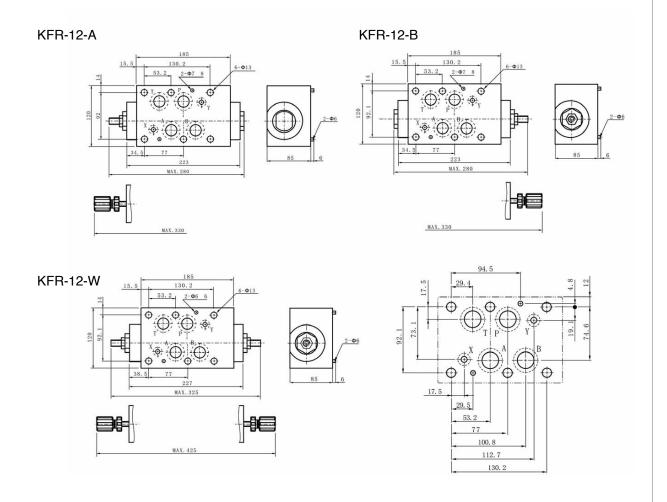

KFR-06-A KFR-06-B


KFR-06-W

KFR-10-A

KFR-10-B

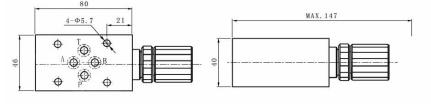




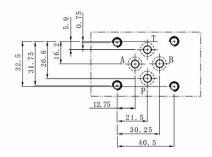
JINCKE HYDRAULICS

MODULAR VALVES SERIES MODULAR VALVES

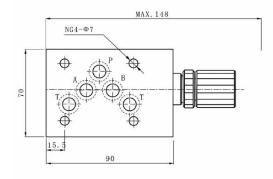
Dimensions



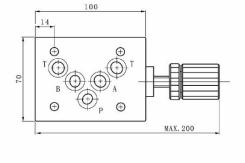
JINCY E


MODULAR VALVES SERIES

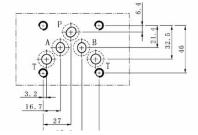
Dimensions







KFR-10-T



KFR-CV-10-T

CONVENTIONAL VALVES

PRESSURE CONTROL

DAM

DAM s series pilot operated relief valves and DBW series solenoid operated relief valves can be used to control and unload system pressure.

Technical characteristics

Size	10	20	30
Max. Flow (L/min)	250	500	650
Max. W.P (Mpa)	35		
Working fluid	mineral oil; phosphate-ester		
Fluid temperature (°C)	-20~70		
Viscosity (mm²/s)	12~380		

Ordering code

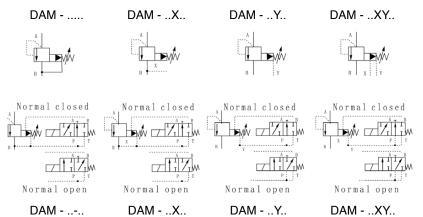
DAM-10-B-1-315-Y-DC24

Pilot operated relief valve+solenoid valve.

Nominal size 10-20-30

State: A normal closed B normal open.

Adjustment type: 1:rotatory knob 2: sleeve with exagon.


Setting pressure 50= 4~50 100 6~100 200 7~200 315 8~315 350 10~350

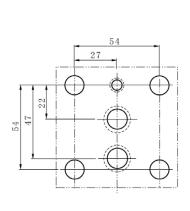
Oil Control: Omit= Intl control Intl drain XY= Extl control Intl drain

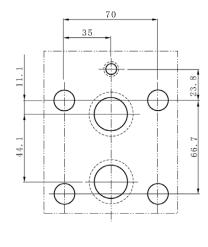
X= Extl control Intl drain Y= Int control Extl drain -

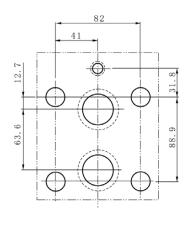
Working voltage DC24 DC12 AC110 AC220.

Code symbol

No code	Internal control internal drain
Х	External control internal drain
Υ	Internal control external drain
XY	External control external drain


JINCKE VIRAILICS


CONVENTIONAL VALVES


DAM

Subplate mounting size:

DAM-10

DAM-20

DAM-30

CONVENTIONAL VALVES

PRESSURE CONTROL

DIU

DIU series solenoid operated unloading valves are used to unload the oil pumps' pressure in a hydraulic system with accumulator. The valve allows high-pressure pump to operate and low-pressure pump to unload pressure.

Technical characteristics

Size	10	20	30
Max. Flow (L/min)	60	120	240
Max. W.P (Mpa)	31.5		
Working fluid	mineral oil; phosphate-ester		
Fluid temperature (°C)	-20~70		
Viscosity (mm²/s)	12~380		

Ordering code

DIU-20-B-1-200-Y-17-DC24

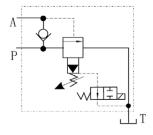
Unloading relief valve+solenoid valve-

Nominal size: 10 20 30

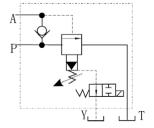
State: A normal closed B normal open -

Adjustment type: 1:rotatory knob 2: sleeve with exagon -

Working pressure: 50 5~50Mpa 100 10~10Mpa 200 80~20Mpa 315 16~31.5Mpa


Oil Control: Omit= Intl control Intl drain XY= Extl control Intl drain

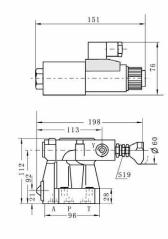
X= Extl control Intl drain Y= Int control Extl drain

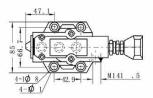

Switching differential pressure (P□A) 10 on average 17 on average

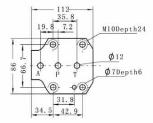
Working voltage DC24 DC12 AC110 AC220 -

Code symbol

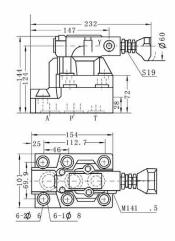
DIU 10/20/30 ...Y...

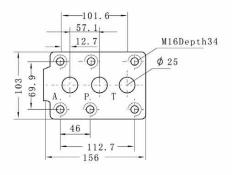


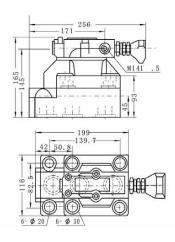

JINCKE LINES

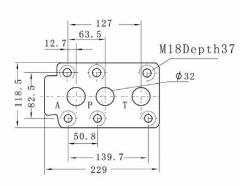

CONVENTIONAL VALVES

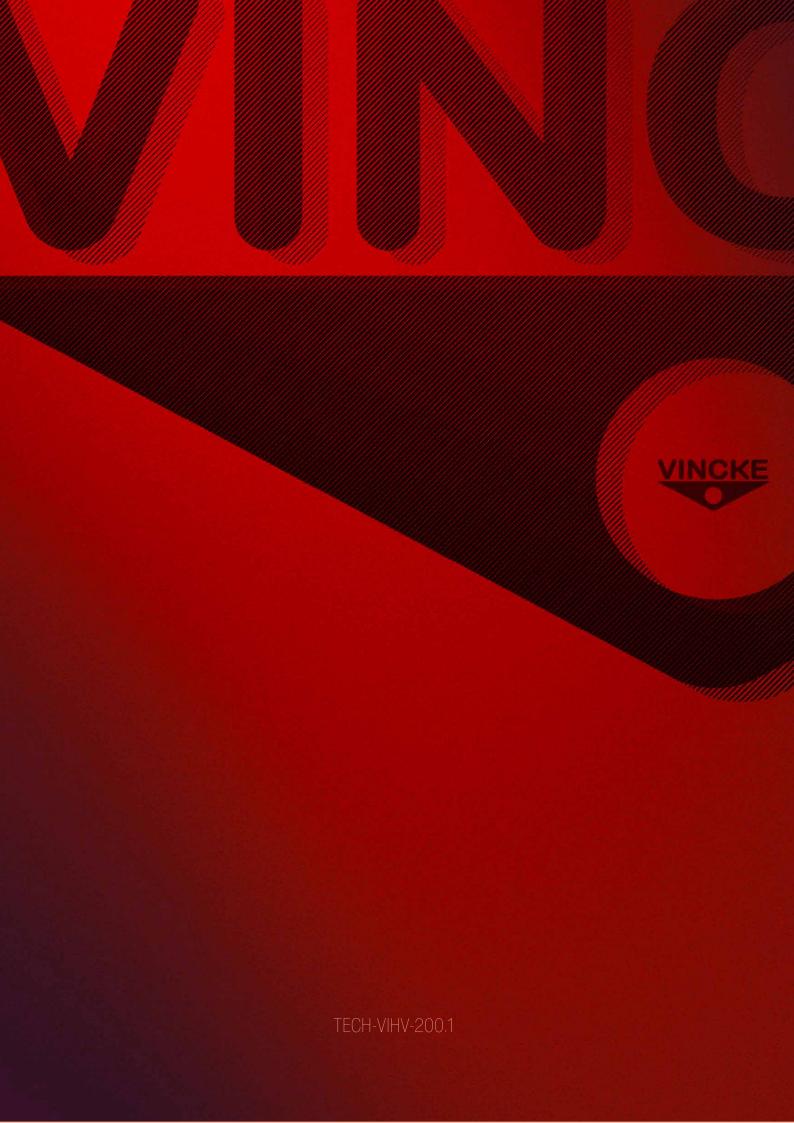
Subplate mounting size:


DIU 10






DIU 20


DIU 30

